Monte Carlo reference data sets for imaging research: Executive summary of the report of AAPM Research Committee Task Group 195.

نویسندگان

  • Ioannis Sechopoulos
  • Elsayed S M Ali
  • Andreu Badal
  • Aldo Badano
  • John M Boone
  • Iacovos S Kyprianou
  • Ernesto Mainegra-Hing
  • Kyle L McMillan
  • Michael F McNitt-Gray
  • D W O Rogers
  • Ehsan Samei
  • Adam C Turner
چکیده

The use of Monte Carlo simulations in diagnostic medical imaging research is widespread due to its flexibility and ability to estimate quantities that are challenging to measure empirically. However, any new Monte Carlo simulation code needs to be validated before it can be used reliably. The type and degree of validation required depends on the goals of the research project, but, typically, such validation involves either comparison of simulation results to physical measurements or to previously published results obtained with established Monte Carlo codes. The former is complicated due to nuances of experimental conditions and uncertainty, while the latter is challenging due to typical graphical presentation and lack of simulation details in previous publications. In addition, entering the field of Monte Carlo simulations in general involves a steep learning curve. It is not a simple task to learn how to program and interpret a Monte Carlo simulation, even when using one of the publicly available code packages. This Task Group report provides a common reference for benchmarking Monte Carlo simulations across a range of Monte Carlo codes and simulation scenarios. In the report, all simulation conditions are provided for six different Monte Carlo simulation cases that involve common x-ray based imaging research areas. The results obtained for the six cases using four publicly available Monte Carlo software packages are included in tabular form. In addition to a full description of all simulation conditions and results, a discussion and comparison of results among the Monte Carlo packages and the lessons learned during the compilation of these results are included. This abridged version of the report includes only an introductory description of the six cases and a brief example of the results of one of the cases. This work provides an investigator the necessary information to benchmark his/her Monte Carlo simulation software against the reference cases included here before performing his/her own novel research. In addition, an investigator entering the field of Monte Carlo simulations can use these descriptions and results as a self-teaching tool to ensure that he/she is able to perform a specific simulation correctly. Finally, educators can assign these cases as learning projects as part of course objectives or training programs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging.

Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Tradit...

متن کامل

Modeling and dose calculations of a pure beta emitting 32P coated stent for intracoronary brachytherapy by Monte Carlo code

Background: Recently, different investigators have studied the possibility of radiation therapy in restenosis prevention and have shown promising results. In this study a unique radioactive source for intra vascular brachytherapy (IVBT) was investigated. The two-dimensional dose distribution in water for a 32P IVBT stent has been calculated. The pure beta emitter source 32P has been co...

متن کامل

Comparison of dosimetry parameters of two commercially available Iodine brachytherapy seeds using Monte Carlo calculations

Background: Iodine brachytherapy sources with low photon energies have been widely used in treating cancerous tumors. Dosimetric parameters of brachytherapy sources should be determined according to AAPM TG-43U1 recommendations before clinical use. Monte Carlo codes are reliable tools in calculation of these parameters for brachytherapy sources. Materials and Methods: Dosimetric param...

متن کامل

A Comparison of dosimetric parameters between IAEA TRS-398, AAPM TG-51 protocols and Monte-Carlo simulation

Background: Two protocols of AAPM TG-51 and IAEA TRS-398 were compared followed by a measurement and Monte Carlo simulation of beam quality correction factor, KQ, AAPM TG-51 and IAEA TRS-398 protocols were compared for the absorbed dose to water for DW, and KQ parameters. Materials and Methods: Dose measurements by either protocols were performed with cylindrical and plane parallel ch...

متن کامل

Determination of Dosimetric characteristics of a New 192Ir-PDR Brachytherapy Source According to AAPM TG- 43 Protocol using Monte Carlo simulation technique

Introduction: 192Ir is one of the important sources frequently used in brachytherapy. Up to now, a lot of commercial models of this source have been made which Ir-192 has been recently added to them. The aim of the present study is to determine the dosimetric parameters of this new source model based on the recommendations of TG-43(U1) protocol using Monte Carlo simulation tech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 42 10  شماره 

صفحات  -

تاریخ انتشار 2015